Goto

Collaborating Authors

 Nuclear Medicine


DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering

Neural Information Processing Systems

Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes, widely used in preoperative settings but limited in intraoperative applications due to computational bottlenecks, especially for accurate but heavy physics-based Monte Carlo methods. While analytical DRR renderers offer greater efficiency, they overlook anisotropic X-ray image formation phenomena, such as Compton scattering. We present a novel approach that marries realistic physics-inspired X-ray simulation with efficient, differentiable DRR generation using 3D Gaussian splatting (3DGS).


7 Appendix A Limitations

Neural Information Processing Systems

Table 6 provides summary statistics of domain coverage. Overall, the benchmark covers 8,637 biology images and 8,678 pathology images across 12 subdomains. Similarly, Table 7 shows summary statistics of microscopy modalities covered by Micro-Bench perception, including 10,864 images for light microscopy, 5,618 for fluorescence microscopy, and 833 images for electron microscopy across 8 microscopy imaging submodalities and 25 unique microscopy staining techniques (see Table 8). Micro-Bench Perception (Coarse-grained): Hierarchical metadata for each of the 17,235 perception images and task-specific templates (shown in Table 23) are used to create 5 coarse-grained questions and captions regarding microscopy modality, submodality, domain, subdomain, and staining technique. The use of hierarchical metadata enables the generation of options within each hierarchical level.



INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and Prognosis

Neural Information Processing Systems

Synthesizing information from multiple data sources plays a crucial role in the practice of modern medicine. Current applications of artificial intelligence in medicine often focus on single-modality data due to a lack of publicly available, multimodal medical datasets. To address this limitation, we introduce INSPECT, which contains de-identified longitudinal records from a large cohort of patients at risk for pulmonary embolism (PE), along with ground truth labels for multiple outcomes. INSPECT contains data from 19,402 patients, including CT images, radiology report impression sections, and structured electronic health record (EHR) data (i.e.



NeurIPS_2024_Touchstone1_0-3

Neural Information Processing Systems

How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs.


Exploring Forensic Dental Identification with Deep Learning

Neural Information Processing Systems

Dental forensic identification targets to identify persons with dental traces. The task is vital for the investigation of criminal scenes and mass disasters because of the resistance of dental structures and the wide-existence of dental imaging. However, no widely accepted automated solution is available for this labour-costly task. In this work, we pioneer to study deep learning for dental forensic identification based on panoramic radiographs. We construct a comprehensive benchmark with various dental variations that can adequately reflect the difficulties of the task.


Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning

Neural Information Processing Systems

In the medical multi-modal frameworks, the alignment of cross-modality features presents a significant challenge. However, existing works have learned features that are implicitly aligned from the data, without considering the explicit relationships in the medical context. This data-reliance may lead to low generalization of the learned alignment relationships. In this work, we propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of medical visual and textual features. We explore the natural auxiliary role of radiologists' eye-gaze data in aligning medical images and text, and introduce a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. We conduct downstream tasks of image classification and image-text retrieval on four medical datasets, where EGMA achieved state-of-the-art performance and stronger generalization across different datasets. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal alignment framework.


Copycats: the many lives of a publicly available medical imaging dataset Amelia Jimรฉnez-Sรกnchez 1

Neural Information Processing Systems

Medical Imaging (MI) datasets are fundamental to artificial intelligence in healthcare. The accuracy, robustness, and fairness of diagnostic algorithms depend on the data (and its quality) used to train and evaluate the models. MI datasets used to be proprietary, but have become increasingly available to the public, including on community-contributed platforms (CCPs) like Kaggle or HuggingFace. While open data is important to enhance the redistribution of data's public value, we find that the current CCP governance model fails to uphold the quality needed and recommended practices for sharing, documenting, and evaluating datasets. In this paper, we conduct an analysis of publicly available machine learning datasets on CCPs, discussing datasets' context, and identifying limitations and gaps in the current CCP landscape. We highlight differences between MI and computer vision datasets, particularly in the potentially harmful downstream effects from poor adoption of recommended dataset management practices. We compare the analyzed datasets across several dimensions, including data sharing, data documentation, and maintenance. We find vague licenses, lack of persistent identifiers and storage, duplicates, and missing metadata, with differences between the platforms. Our research contributes to efforts in responsible data curation and AI algorithms for healthcare.